[IMG]http://www.mx5italia.com/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAxgAAAJkCAIAAAAdiBA9AAAgAElEQVR4nOy9f2xb553u ZKgTRK2JMi5MmTXkJMayqSEPQnkdAM5E4xcF3VSTKUMOrRxGzq4OwpmpyruoEJx9xqeu8P1ZLzM3DHUbmHO7IU1t4g1HThssJZ6kViDtHLQrY3urb1tbU0ba3W3yjqWIY0sJI6hH9bqvPsHKYnieclz L7nHL7fl88H/iOR fD5vs85h fxOSTFOAAAAAAAkILVegAAAAAAAKqgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASIIiBQAAAAAgCYoUAAAAAIAkKFIAAAAAAJKgSAEAAAAASEKpSDEAAAAAGE2tu0bVUJqYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AAAAAcAnFEz2liSnmCwAAAACXUDzRU5qYYr4AaIC1OHHp9IkvJFpijDEWbWnvfPmb2bE7S5YL7dJ4uoMxxhLpcd/nLMN4OsEYYx3p8SXOb6QTUcaiifSNWo0DAPAPiid6ShNTzBeAmrM68d0vNIVZKVt29vznD52rFIoUACA4KJ7oKU1MMV8Aas38aO9exli4/d9cuHXf4tz65Ne5vmdijLHQ5/qvPnCSW0uz/218fHx8cnbJ2ev aP/vJRKJZ/pHl70YvYCORcqflQJQ91A80VOamGK ANQaUfNY VHfrghjj3UP3fXUazaXbGGMRZM5F63LNToWKX9WCkDdQ/FET2liivkCUGsms12N StSb16fFp311zrBH33ncubY/qYIi 7q6DmVm/iUc156a28pl4wyxlr KPv2QOrzO6MhFt118NgbYzOPOJ kj2ZTGxjjEUSyf/wem58hXPr7tgb/ bwM22NIRZqbHvm8Kunhz9YFI5Z4ZGVitSjmbH/eOLw03saIyzUuOeZIydOX5pYtN wXO89QxMj/ PhPc2J9I31tSRzs/kHFX6wUY4 nRh Pf/km0cSrdTtJACASlA80VOamGK ANSa5ansl KF90WFoi2Jrp4/7j/zt7lrH66VqkLJCP rlsdCG2 hCu38owsfLpcpUlsaG MbD2Xh5uTF ULFWSOazC0t3Mo8H2OMsVjLvqf25d/qHn765M8/tQ1Z8ZHli9TqrTPPxkKMhaItn03sa4kyxljsd05eXSl9/sIat3zumQOxUEHuUKQ uZ7ujBVCe6IwEms8mL62KFip 0kAAJWgeKKnNDHFfAGoPda9a3/b17WnuPowxra0HPqfrny8ul4yWOgzLw787GNr4c7lb3XEQozFD6R/viouUuGmw2euzizypcm3UvtCjLHHekcf8dIbXtbPTrZvZWz7s5lfrnLOF9/ra9vCWLwjc9M2YcVHli1SCzdOHmCMRZ7NfLDKOZ /0vckYyzUkZkoNVhfY2vn1/9mKPf26Ph85SJlTZ07HA8x1rD/Gz csTi37v301PNxxlj8S9mpZdutPfeTAAAqQfFET2liivkCoA2LsxM/G/2Hc m P oslKqtj/e/v7J Repg5nbhTtTsSGoPYyzSlZ0uc2uvzFUc4TuHrKXZyRtXLg2eOZ5YvxokpswjHd8jtTQ7eePK8ODpY4mGjVE3URgscmjgt t32yqtZWU6eyTCGNtxYuThmuDhpdSOMGPNRwenyr5HynkSAEAlKJ7oKU1MMV8AdGTx55lDzWuXTOydoLg8qRQpa/HWfzpxcFeUMRZq3PPM0/saw2WKVMVHVihSi788f LzO6MhxiKNew507GuqXKQ29Z5KaxF 6UOxte0J3U4CAKgExRM9pYkp5gtAjVkeTjWEGGs4NPDronc F25FsUR6vPwVqS1HB dUitTK /2Pb2Ws5XDm/Zklq9IH7io/smyRenC1/3Oh9fuMlb7yqtoiVeGKVGNXdtL2hO4nAQBUguKJntLEFPMFoNbcGepuYYyFdr50ZvT2JxbnfOHO2F8d3bml5NYeC7X1ZK9/bC18OPyN/bEQY48dHfx/yn1qz1WRKhSgJ/uuzHO 8vHP//JQvMytvcqPLFuk8v 9pa3vvUXOrY9/evpQcxVF6tG7vY FGdvalvr h0uW9fG1Nw63rL953PYeqY8uf OZWNn3SLmfBABQCYonekoTU8wXgJqzOvF3L 3cwmysfS5v7YpUY P2or MHTh5dcGSK1KRgyd/NH7nk38ZPJq3jbbs 9yexvDW6NYyRWqu4iPLFqmpwaPNjDHGYi37ntzTuDUa3VJFkeJ3c8ndRXmEtzduD288qMKn9mwrtdxPAgCoBMUTPaWJKeYLgAZYSx ODrz24jN7GkP5k33788l///fXZh9xzoXfI7X21VC8yiK1NDHQlW8cLJrMLc1eybzS9UxbY7ixrfNfp4cvnzv6GGOh PNnb6 WTFjxkWWL1OrHV9441vX0nsZoY1vnsfQP/o9zL8UZY/HDA7dLvqxK/N5wa ZHmWPPFr4NK/XtsezL7r5Hyr5S95MAACpB8URPaWKK QKgPZ5 Sbd179rfv3Hq5Km/ OuRydK2ZBb1s1IAAoTiiZ7SxBTzBUB78NtOAAC6QPFET2liivkCoD0oUgAAXaB4oqc0McV8AdCelU/ufDA Pv7rO5/gN8MBAGoLxRM9pYkp5gsAAAAAl1A80VOamGK AAAAAHAJxRM9pYkp5gsAAAAAl1A80VOamGK AAAAAHAJxRM9pYkp5gsAAAAAl1A80VOamGK AAAAAHAJxRM9pYkp5gsAAAAAl1A80VOamGK AAAAAHAJxRM9pYkp5gsAAAAAl1A80VOamGK AAAAAHAJxRM9pYkp5gsAAAAAl1A80VOamGK AAAAAHAJxRM9pYlrlO doe6WaDK3VPQja bdU4f3RhljjIWann5l4Cez V/3at0dO93T3hhhjIUan o /d5M4dfAPpoZe727vSnEGAs1tXe/PjbzKPiVAAAAADqDIuUvNcjXmrl /kR7mG0qUqs3Ms82stj Y2fOvzX0nW927Q6FHk8NT3O Op873swaEsdOD148f bY/hjbnczd5Zzz YvJ5kgscfzM4NDgmeOJWKQ5eXE 6MUAAAAAWoMi5S8B57s8kmpgBYqL1MqVvl0sfiD989X8/z 8lNoR3nJ0cI5PZrsaWetrowsW55wvvNPbGgl3DkzxlenskQh7ond0jnPO dxo7xMs/MLAFC5KAQAAABugSPlLwPlaszd mMvlvt/fuWVTkVoeSTWw3amRubXH/exk 9ZQR2ZiKZeMhhpSw8uFv5gbSe1m0WRuaTaXbGENqZHl4mdoSeZmg1wOAAAAoDkoUv5Sm3yXcskoK3mPVBGrH//437aHtz7e//7KRKYjFE2kb6wrx9MdLPRcZuJ6piPOEunxddF4OsHiHZmbvg8PAAAA0AFFyl 0K1LW3bHMH7bHwrH9f3Z55hEfTyeYrUixjvT4tXQiaitSxY8EAAAAAIqUz hUpB7NjGV62rczFm978S8LH8Hz4ooUs/E/AwAAALXDr9OrCBQpf9GmSD2aufxn 2PhWPuxgav3rPUfLw nGsKi90jNjaR2y71HSm7J0kEFLDTbTloIOx2EsNNBaLadtDBgOxQpRyhNrEmRsqbOHY5Hmg6fvbVobX6o4FN7ka7stPBTe5Ej2ekVR3MSh5m00Gw7aSHsdBDCTgeh2XbSQhQp3aA0sR5FKt KtiWS/y69wem/HplY5avzw6 2hhoSqTeGcm eTR2IFb5fivP5t1OtW2OJ1Nmhi0NnU4nY1tbU226 R4rEYSYtNNtOWgg7HYSw00Fotp20EEVKNyhNrEeR uRK3z77O5nWHvDgVvarbdEQY4xFP9uT/cViQWUt3jrX0xZnjDEWb s5Z7uaJYbiLhUAiEUIYhGCWOwgEyGIRQiKlCOUJqaYryIk/r0iLTTbTloIOx2EsNNBaLadtBBXpHSD0sQU81WExGEmLTTbTloIOx2EsNNBaLadtBBFSjcoTUwxX0VIHGbSQrPtpIWw00EIOx2EZttJC1GkdIPSxBTzVYTEYSYtNNtOWgg7HYSw00Fotp20EEVKNyhNTDFfRepwyW5ALEIQixDEYgeZCEEsQlCkHKE0McV8FanDJbsBsQhBLEIQix1kIgSxCEGRcoTSxBTzVYTEhV9podl20kLY6SCEnQ5Cs 2khbi1pxuUJqaYryIkDjNpodl20kLY6SCEnQ5Cs 2khShSukFpYor5KkLiMJMWmm0nLYSdDkLY6SA0205aiCKlG5QmppivIiQOM2mh2XbSQtjpIISdDkKz7aSFKFK6QWliivkqUodLdgNiEYJYhCAWO8hECGIRgiLlCKWJKearSB0u2Q2IRQhiEYJY7CATIYhFCIqUI5QmppivIiQu/EoLzbaTFsJOByHsdBCabSctxK093aA0McV8FSFxmEkLzbaTFsJOByHsdBCabSctRJHSDUoTU8xXERKHmbTQbDtpIex0EJKwYwAwxlzvPO4fWQyKlCOUJqaYryJyS5YOKmCh2XbSQtjpICRhV4cvicAOilTNoTQxxXwVqcMluwGxCEEsQgyOxeClAff4vRugSDlCaWKK SpSh0t2A2IRgliEGByLwUsD7kGRqjmUJqaYryIk7kpIC822kxbCTgchCTuvXxJvpBNR29tvOtLj19KJxkT6xsYDx9MJ1pEeX JLueQmRSi654unRj y NJ4umPTz9u mr31gHPOubU4/r3XOncXdNHdna99b3zRsg3z4Nb5V/c3RRhjjEUa24 vyTnnnD 8lNoRZpEj2emVopFY GDm9sYzzY6k9jDWkszN5v92g hne7K/WCwseX1pD8Yv/Gnnzlhh4J2HXrtwc7FkqPF0gm3d2/dPC4X/XxpPd7BEerzcVIGAW3s1h9LEFPNVhMQ5QFpotp20EHY6CEnY fWSuJRLRluSudm1/79RsUhtPNKa/fGpzubQkyevr25qGNbsj0917tjWfeE 56sTf/fSzub2nvTwxKecfzoxnO5pb9750t9NrBZPsPzh4FeaYgdS2Z/OWtbi5H9JH/1MuPXV4fn8g1bvD728LfZYS0NzV3ayaCTGwp2Z20uFn RrzUaR6kiPL3HOuXXvp6eej297eej atHSFifO9 yM/05P tLEosUXPxhOv9we3/PS V9vmqvgcqD/p/P5pIqWKZoqEFCkag6liSnmqwiJc4C00Gw7aSHsdBCSsNOtSBWKRTSZW9p8qWajcMyOpPaED6RvFtWT1ZvpA E9qZHZjR9Zv8oc3NHef2X9gpA1cfZQbFcyd49zzvmdoe6d27rPfi 1Z MS1Hg6weKNjU0HM7 yOOfcejhyYsf2xsawrUgVz7 tIeXUju2H0j/vGiuhZvpZ8M7Tow8LLpaNp5OsF3PdOyOH0xfX7Q2FynRVIGAIlVzKE1MMV9FSJwDpIVm20kLYaeDkISdbkXKmv3xqc6Wncnvz2xqGNbixNCJ9sbH 99fWflR366mzoHfbPb7zUBn066 H23cD5vOdkX29V35RDze/Qvd2z6TzH30cOTEjvVLUOPpBEt8LdWxpVBiZkdSe3ckv/blqK1ILf7m4omnIo/3X13ZWNrKlb5d4RcGph5tMpoa6AxvHmM8nWAdf3H5uy82Pfb8wM3V4mUKpwoEFKmaQ2liivkqUodLdgNiEYJYhBgcy8bSGFP9U0x1RYptIvZ85tYCL32PFGOhfSeG71ilz5xnNpdsiSZzS/bnF7Byb/DL8fyFooeXUjsaCpeg8hXnUvrgls7M7SX 8FJqx 7k0HeTUdF7pNjWthM/mLE2lraUS0Y3TSDMYX2wj28PHI7Hv5SderBWpMpMFQh 7 EoUo5QmphivoqQ Me0tNBsO2kh7HQQkrDTo0gVXZGaGX6tPb49 danJe/Ctu5dPf2FpviXspPviq5ITWa7Htvb/5ON22r2K1LW3St/ 1dvjExafDLb1VjciQr30fIj3fqvmYMtBzO//HTkxI5tLw9NX0zar0jxR7NX/7Kr6V8dzn5gVb4iNZ3tijzVf 1TwcIXr6UPNje9 N3Lf5FfZpmpAgFXpGoOpYkp5qsIiXOAtNBsO2kh7HQQkrAL6tbezUxHU/vJn60Xg9Vr/XtDz2Umlm2PnB/t3csS6fGSIrXxnP/s6j1Sq9dOPtlQ9OE4bv124FCksSs7yaezXZHWtTdLWRv30QoV55Pbmc4tB/v/5pW2bd0X7q PV3qJa/0amMR7pPLPYy389FtPRnZ1PLOLJdLj5aYKBBSpmkNpYor5KkLiHCAtNNtOWgg7HYQk7IIqUgs3089Gdh45OfzBIrcWJ/73k4d3R/JlSPhmc0GR vR29g aw52Z20uiT 01xJ8/e1vwqb2nkpl3JhdXiz61tzydPRIpfOCOc55/Z9L2g5lfWWsVx7qdObhle P21u6hO1xcpKzF2 debM7ffav4qb3YjucHbto tbf PDOXe9tDjLHEn79XbipPN0s5UKRqDqWJKearCIlzgLTQbDtpIex0EJKwC6pIcb5480Lvs02h/G2r2M7OP70w/kD0yNW5wZe2RA5lPvi49D1SG1/dtPl7pEI79r/y7auzj0pnsO5dHXhl/Xukmva/ev7WA279KnNw25ajg3Mbj5saPNocevLk9ZtrFWf12sknoyxfazYVqWLibT3nbi1a5b9HioWann5l4CezJVVo85Ut696bPc1h9rk/TJWbapUHAIpUzaE0McV8FanDJbsBsQhBLEIMjsXgpQH3 L0boEg5QmliivkqUodLdgNiEYJYhBgci8FLA 5Bkao5lCammK8iJO5KSAvNtpMWwk4HIQm7OnxJBHZwa6/mUJqYYr6KkDgHSAvNtpMWwk4HIQm7OnxJBHZQpGoOpYkp5qsIiXOAtNBsO2kh7HQQkrCrw5dEYAdFquZQmphivoqQOAdIC822kxbCTgchCbs6fEkEdlCkag6liSnmq0gdLtkNiEUIYhFicCwGLw24B282rzmUJqaYryJ1uGQ3IBYhiEWIwbEYvDTgHhSpmkNpYor5KkLiroS00Gw7aSHsdBCSsPPrJfHhpdSOMIscyU6vrP3owfiFP kofD1mKLrni6dGP7I4t/3SYvsXXc7mki3Fj2DRvYdPvTtjlfO6kU6U/BpkxgrfgVn8hZmh6M5Dr124uWgffvGX51NPF747NNTUnszeWrTKeHHO89 xWfKr8WZHUnsYa0nm7mz WtFQtO2r2VsP1uYUfpNnmcEqucxyzvnizQuvHdoZzc9d9JWnpQHG9xz 89GZTd9filt7NYfSxBTzVYTEOUBaaLadtBB2OghJ2Pnzkrh6f jlbbHHWhqau7KT R9ZE2cPxXZ2nfrh5KLFFz 49I3Px NfHry3svmbzT duPjft4e3bf7VK u/1S7/RPd eur5eOh3T15/WM6rQOl3pot hUt8z0vnf73py8OticEXW2OJE9lr9yz 6eTl9NGd8dbU2/MVvPJfel78q/HyfWu9SK39ohtr9senOnds675wn3Ne XfL2Aer5DLLV399/qU98faX04VfwnMp3fM78Z095ycWNwf4aPb6 d79jSW/UQdFquZQmphivoqQOAdIC822kxbCTgchCTt/XhLvDHXv3NZ99nupPetXUJZyyejWnqEH65d2Lvd//gsnr3xsqzs30onopl8GXFKkeL5SrEsEXgVKntndLxW2bmcORvb3X/14/VkmBrpi24/lPrXKeo2nEyze2Ni09qvxrIcjJ3Zsb2wMlxYpvukXCEr8tuNyLjMPR07sCD bvrmw8fjVn6cPbN RuvTQFuDqzfSByOf6rz5YfyyKVM2hNDHFfBUhcQ6QFpptJy2EnQ5CEna vCTev9C97TPJ3EcPR07sWLuCYk2cPRTb0pT4g77M98YmP914sNQVqW07//VbMyvlvETPzFeu9O0KvzAwtflX8k0NdIb39V35ZO3/V6azRyK7 q6scAHlvMbTCZb4WqpjS6FdzY6k9u5Ifu3L0ZIiZS1ODJ1ob3y8//0VzteLlLvBKrtMXunbF 4cmNr0FI mBl4I7 q7smJroqs/6d/b3Dnwm/UfoEjVHEoTU8xXkTpcshsQixDEIsTgWNaXZntTUdWsPeXKvcEvx/NXUx5eSu1oWLuC8mhm7G96X/x8W2OEMRZq t1k5kczltR7pFjjs5kbq5W8OOelRWopl4xuahOCx2y YlRCea/xdIJ1/MWl9MEtnZnbS/zhpdSO3cmh7yaj9vdIMRbad2L4jsX5 gLdDVbZ5Z9Lq9KmJduK1Ka3Z23aDXwCRcoRShNTzFeROlyyGxCLEMQixOBYfChSk9muxuKfl95x49bi5OVvf/35lvBney//i6AxFCh3Reqjd1/7XLhwr62il5srUtPZrshT/dfWr5AJrkhZM1f Nj0w8t/ uazXeDrBOtK3/mvmYMvBzC8/HTmxY9vLQ9MXk6VXpDi37l09/YWm JeyU8sOV6RKB6vsIrwitTKdPRLZ239t1csrUnKgSDlCaWKK Soit2TpoAIWmm0nLYSdDkISdt6/JE5nuyKtydw9znnhfTzhzsztBxOZ50J7 69tvA9orSdVW6Q4fzTa 1j U3hir7UHSr1HavX6ySfDv9M3dn/tB8u/Hfj9SORI9sb/WtYrX3HGP7md6dxysP9vXmnb1n3hfsH9Tuklro2pJN4jVc4F75HaBMUTPaWJKearCIlzgLTQbDtpIex0EJKw8/olcWU6eySy7eWh 2ut4P6F7m3bD2Z 9f/dOvNsrOXQt96eWLS4NXP9/In2/Lm8 iK1VikelvMqtA83n9qL7Xh 4KbgU3vtyczlicWNT 1d/OcKXoV5lqzbmYNbtjdub 0eusPFRerT29k/aC40sIqf2rMPVslF/Km9WPzwwG18ao8GlCammK8iJM4B0kKz7aSFsNNBSMLO45dE61eZg9u2HB2c2/jR1ODR5tCTJ6 vPpoZ/fPDe L5 2Khxs8ls79Y5KI3AxUoX6TmBo9u2f7s/3LhTFkvzsXPXPx1TSzU9PQrAz Z3XTbkXPOrdmfDLyy/j1SO/an/tOthV WX9dGxeGr104 GWX5vlVcpIqJfrYnv/Cy3yNVZrBKLvbvkYo07X9l4Oo9i3N8jxQJKE1MMV9FSJwDpIVm20kLYaeDkIRdHb4kAjsoUjWH0sQU81WkDpfsBsQiBLEIMTgWg5cG3OP3boAi5QiliWuU752h7tLPploz753ufqoxxBiLNLb3nB67W7iOa90dO93Tnv EcONT3affW/tNCI9mxl7vbm8KMcZCTe3dr49tvjZbDoq7VAAgFiGIRYjBsRi8NOAeFKmaQ2niGuSbf1tlmG0uUndzyd0stv/YmfMXB08fSzSw5uO5 VXOV dzx5tZQ LY6cGL588c2x9ju5O5u5xzPn8x2RyJJY6fGRwaPHM8EYs0Jy/Ou/AncVdCWmi2nbQQdjoISdhRPOUAz8GtvZpDaeKA810eSTWsv8WwuEhNZ7sikdbedxY459xaGH2tlW3vHPhN4WtRWl8bXbA453zhnd7WSLhzYCr/WRj2RO9o/s2Oc6O9TzD7V4 IIHEOkBaabScthJ0OQhJ2FE85wHNQpGoOpYkDzteavfHDXC73/f7OLZuK1FIuGWW7UyNrHwFZHk41hKLJ3NJSLhkNNaSGlwt/MTeS2s3WvpqWNaRG1v5ieSTVwIQfdSmFxDlAWmi2nbQQdjoISdhRPOUAz0GRqjmUJq5Nvku5ZLS4SC1PZJ4L5T/IWuBGOhENdWQmJjIdoWjRN/cvjac7WOi5zMT1TEd807e6jacTLN6RueloTnGXCgDEIgSxCDE4FoOXBtyD90jVHEoT61GklsbTHcxWpFgiPT6eTjBbkWId6fFrhQesP2fpIzdg5Sl5gP3x0j8x7Ek8T0mfJ2GaRe3Jk gZNZXtxUHd4/dejSLlCKWJa5MvwStS0kEFLDTbTloIOx2EJOwonnKA57jfDeR2GBQpRyhNrEeRyr/DSfQeqeXhVENY9B6puZHUbrxHqt7spIWw00FIws77l8SlXDJafDEiFN3zxZHQj2kAACAASURBVFOjH1ml36/N2PpHcBZvXuh9tvBN4sXfu73 Xd78wfiFP loimx whvpRJSV0pEev1PG6EY6EQ3t/cbYwtpXhq/99rrSLx8vPM8S5/nf0BdmkSPZ6ZXN65wdSe3Z BZ1zvMfFYocGvitZQ BMbb59 txzvmDW df3V9YVKSx/Xj21tovv9v0HeWxnZ1/emE8/1fF8iLKPt4tKFI1h9LEmhQp0af2Gruyk8JP7UW6stPCT 0Jjm0BJM4B0kKz7aSFsNNBSMLOnyK18W88a/bHpzrzv0rF9pte1gQTA12xpsOnLk8scmtxIveNg83xo fv8aLfLjdx9lBsZ9epH04uWnzxg0vf Hw8/uXBeytCR8GvlCmQL16xJ/vHCr/ad6OobWDN/OBEW6zpC9 dWOWcr94fenlb7LGWhuau7OTmZ7MejpzYESr61b/T2a5IY Fhzr/3ZvnDwa80xQ6ksj dtazFyf SPvqZcOurw/Orwt aF9/Zc35iUVykKj3eLShSNYfSxLoUKT49nHo8FDuQOvtmbuiNVKIhlD E Or88KutoYZE6o2h3JtnUwdiocdTw9Occz7/dqp1ayyROjt0cehsKhHb2pp6G98jZbadtBB2OghJ2PldpArvT1j76LGo38zmki1bu4fW oj1cPRbn//vTl55tFF0lnLJ6NaeoQdrV5IeXu7//BdOXvm4jGOFIrV99zMHWuOd6eufcC4qUtbkhZ494davvXUv/80yd4a6d27rPvu91J7wwcztkl9 t/BOb2t0V9 PVjgv/Lbm9X/cOhYp61eZgzva 6 slx1r4uyh2K5kbvrhyIkd4WfTNxc2RKs/Tx/YviN16aGgSFkVH 8WFKmaQ2libYoU54u/yPZ8Npq/Ut321Y2LuvzBrexX2/IXaTd vSXn3Fq8da6nLf8rP NtPeduLdp 2aYIirtUACAWIYhFiMGxrC NMdU/BQRXpFp2Jr8/U7bfLE0MdMVCOxJf6cv8/Y8ni1/WNl2R2tKU IO zPfGJj 1PYH7ItWY Iu3Bl9sjT9/9vaqvUg9uJn5/Xho34nhO4Uh7l/o3vaZZO6jhyMndoQ7M7dLnvKTK3372K6 Kys8/ srIl3ZafFIm2dI3 DT2a7Ivr4rn9ge8MmVvn3hzoGpTT98NDXwQnhX35UVe5Gq/Hjb05fB7z0cRcoRShNTzFeROlyyGxCLEMQixOBY/ClSm98dFHs c2uBC94jtfbBGuvu2Buvvfjc4/lfmdW0/1gm/yuzNorOo5mxv l98fNt d d1fS7ycyPZqxix9IiJTIqtJDV22efjz92OPuBtalIWQtXTx6INR44 f7atZ2Ve4Nfju84MfLQ4g8vpXY0HMz8quQfrytX naxfX1XPuH3L3Rva9q4/Sd4j1TeaK0Jie4qrg9vb4FLuWQ0mswt2YtU5cc7bf41UKRqDqWJKearCIm7EtJCs 2khbDTQUjCzvf3SM0Mv9Ye355869OyF4qK XRy9Dtf72wN73rt8kNL1DasxcnL3/768y3hz/Ze/heho8MVqfQNzj 5nu6MNX1l8PKpjef/ Ie9bdH4oczNjUtik9muxuIqJLi7t/J / PxXX3/NDv08rbiN61KXJGy7l752796Y T/GhNcYVqZzh6J7O2/turyitT6423 ZcCtvZpDaWKK SpC4hwgLTTbTloIOx2EJOz8LlKcz4/27mWJ9HjZfnMz09G4t/8nGyf99f5U I8HE5nnQptqweY UXWR4nxhrP/JhtaOA7vzRtbUW8f2hpq Mvjh8sbDp7NdkdZk7h7nfO2tSPa7ew vn/zd0K7u3i8X3dcTjGSbYfXayScb9vb90/o7m6zfDhyKNHZl/2 8R0odiid6ShNTzFcREucAaaHZdtJC2OkgJGHnf5FaGk93VCxSC7cyz8eafu9bwx8scm7N/p/nU09FHu /urLRqFZvnXk21nLoW29PLFqFXwMfKfq4nESR4qsfX/6TtlD jtvHE9kXm0J7j701VXS9aWU6eySy7eWh 2v17f6F7m3b7Xf3Vq ffDLEGGvc9LE t5/aeyqZeWdycdXxU3ux OGB21V8am/t8W5Bkao5lCammK8iJM4B0kKz7aSFsNNBSMLO/yK1Ojf40pbIocwH/6/9650KXzJsfTR66ot7Cl DVPSNSsXvkRr988N78h 1YaHGzyU3PoXj5j1SeaPNLcT67VDPro3fG1FKJBqLbDk6OLfuwqcGjzZv/uKo/Pp nj4QZ8WViwvfI7XpfVqcc27duzrwyvr3SDXtf/W8 HukIk37Xxm4es/inNu/OisfYNnHuwVFquZQmphivorU4ZLdgFiEIBYhBsdi8NKAe/zeDVCkHKE0McV8Fan9kjd9pEcXah LliAWIQbHYvDSgHtQpGoOpYkp5qtIje9KCD4e7aUjibsnwQthp4OQhF0dviQCO7i1V3MoTUwxX0VqeQ5g5b5qxjNHEueq4IWw00FIws723iBQp/i6m6FIOUJpYor5KiK3ZOmgNoQl5cmpS9VsTo3tpIWw00EIOx2EZttJCwO2Q5FyhNLEFPNVpDaHmbA2VexSJF4O8CpZh3bSQtjpIDTbTlqIIqUblCammK8iNVhyhcLk4h5fMNThnuAGxCIEsdhBJkIQixAUKUcoTUwxX0WCXrJjVdKjS9XhnuAGxCIEsdhBJkIQixAUKUcoTUwxX0UCvfDrsiSJHlbJkdnetL72x zr4dJC2OkghJ0OQrPtpIW4tacblCammK8iwR1mVV1qsj24rGP5FqVyZYvEq4 0EHY6CGGng9BsO2khipRuUJqYYr6KBFykqhBubkJiYeW2pNClSLz6SAthp4MQdjoIzbaTFqJI6QaliSnmq0hAS5brNOo9SbZL1eGe4AbEIgSx2EEmQhCLEBQpRyhNTDFfRQItUtJCu9x9Q5LqUnW4J7gBsQhBLHaQiRDEIgRFyhFKE1PMV5EgLvwWVRmlN1eta113o4Jd9V2KxPVwaSHsdBDCTgeh2XbSQtza0w1KE1PMV5HgipSC3aYuVU0r2rCrskuRePWRFsJOByHsdBCabSctRJHSDUoTU8xXEd8Ps80NRj7h6ltUqZ1cA6tuRrxK1p2dtBB2OgjNtpMWokjpBqWJKearSEBFSs2uIFS/Q f6GUi8 kgLYaeDEHY6CM22kxaiSOkGpYkp5quIv0uuvvr4jp9FyngQixDEYgeZCEEsQlCkHKE0McV8FQmiSGmFu25Xh3uCGxCLEMRiB5kIQSxCUKQcoTQxxXwV8fHCr6iyaHGB2kWXInE9XFoIOx2EsNNBaLadtBC39nSD0sQU81XE9yLlhZ20EEUKdtoKYaeD0Gw7aSGKlG5Qmphivor4dZiVKSu6vBw4dSkSrz7SQtjpIISdDkKz7aSFKFK6QWliivkq4m R8shOWogiBTtthbDTQWi2nbQQRUo3KE1MMV9F/Fqy072z2lOxS9XhnuAGxCIEsdhBJkIQixAUKUcoTUwxX0XqcMkFUKSqB7EIQSx2kIkQxCIERcoRShNTzFcREhd pYUOqvJdqq5jgV0gQtjpIDTbTlqIW3u6QWliivkqQuIwkxYG/F4uc2KBnf9C2OkgNNtOWogipRuUJqaYryIkDjNpodsiZXtYvccCO/ FsNNBaLadtBBFSjcoTUwxX0VIHGbSQlcqFCnY1UIIOx2EZttJC1GkdIPSxBTzVaQOl1yK6KIUYhGCWIQgFjvIRAhiEYIi5QiliSnmq0gdLlkAipQ7EIsQxGIHmQhBLEJQpByhNDHFfBUhceFXWuhWZbsohVhg57cQdjoIzbaTFuLWnm5QmphivoqQOMykhShSsNNWCDsdhGbbSQtRpHSD0sQU81WExGEmLaxChSIFO6PnNNtOWmi2nbQQRUo3KE1MMV9F6nDJYjZflEIsQhCLEMRiB5kIQSxCUKQcoTQxxXwVqcMllwVFygnEIgSx2EEmQhCLEBQpRyhNTDFfRUhc JUWVqcquiiFWGDntxB2OgjNtpMW4taeblCamGK ipA4zKSFKFKw01YIOx2EZttJC1GkdIPSxBTzVYTEYSYtrFqFIgW7oISw00Fotp20EEVKNyhNTDFfRUgcZtJCySLFGGKBnd9C2OkgNNtOWogipRuUJqaYryJ1uGQHFIqU8SAWIYjFDjIRgliEoEg5QmliffK1Zt49dXhvlDHGQtE9Xzw1 pFV Iu7Y6d72hsjjLFQ41Pdp9 bKfzFo5mx17vbm0KMsVBTe/frYzOP3Bjps2RdYIJfvQfyYG8RgljsIBMhiEUIipQjlCbWJV/rg zhHSx2IHX2zbcGTx9LNLD4l7JTy5yvzueON7OGxLHTgxfPnzm2P8Z2J3N3Oed8/mKyORJLHD8zODR45ngiFmlOXpx3YUXiwq 0UEalUKRMjgV2Xgthp4PQbDtpIW7t6QaliXXJd2qgM7xlb/9PVjnnnK9e69/LtncO/IbzyWxXI2t9bXTB4pzzhXd6WyPhzoEpvjKdPRJhT/SOznHOOZ8b7X2ChV8YmHK KEXiMJMWStqhSMHOfyHsdBCabSctRJHSDUoT65JvuSK1lEtGQw2p4eXC4 ZGUrtZNJlbms0lW1hDamTtL5ZHUg2sJZmbdbQicZhJC5WKVPVaw2OBnadC2OkgNNtOWogipRuUJtYlX2vyQs eUOOzvQNv5ob Y2/HjtDOP7rw4TKfyHSEoon0jbXHLY2nO1jouczE9UxHnCXS4 vPMJ5OsHhH5qajFYnDTFoov0FRpGDnsxB2OgjNtpMWokjpBqWJtcn30cy7f9oeZms0HkxfW T5emQrUqwjPX4tnYjailTxIzdg5Sl5gP3x0j8h9yT5IuXmaT1JSZ8nYTS3l/ufGPYkTLOoPXkSPaPG9nLzE7knQZFyhNLEeuRrLVw9eSAW35f8j6OTn/LFD4a/9XtNoT09FyYtba5ImQ/DZ/cEYG8RgljsIBMhiEUIipQjlCbWI9/50d69bMtLg3OrhR s/qR/75Zw58DU8nCqISx6j9TcSGo33iPlsV31RaouYoGdR0LY6SA0205aGLAdipQjlCbWI99PrvTtY5HfH/jtWi1aeKe3NRLpyk6LPrUX6cpOCz 1FzmSnV5xNCNxmEkLPShS1TxDXcQCO4 EsNNBaLadtBBFSjcoTaxJvqu3zjwb29LUkToz I 5oe/0H30iGno8NTzN er88KutoYZE6o2h3JtnUwdihZ9zPv92qnVrLJE6O3Rx6GwqEdvamnob3yOFIgU7bYWw00Fotp20EEVKNyhNrE2 RV9TzkLRnYdeu3BzsfBXD25lv9oWDTHGWPSzPdlfrP3cWrx1rqctzhhjLN7Wc 7WouXGicRhJi1UtUORgp1vQtjpIDTbTlqIIqUblCammK8idbhkN8gVKePB3iIEsdhBJkIQixAUKUcoTUwxX0XqcMlu2FSkENEa2FuEIBY7yEQIYhGCIuUIpYkp5qsIiQu/0kIP7KopUnUUC yUhbDTQWi2nbQQt/Z0g9LEFPNVhMRhJi1EkYKdtkLY6SA0205aiCKlG5QmppivIiQOM2mhZ0XK3fPUUSywUxbCTgeh2XbSQhQp3aA0McV8FSFxmEkLvbFDkYKdD0LY6SA0205aiCKlG5QmppivInW4ZDfIFSnjwd4iBLHYQSZCEIsQFClHKE1MMV9FSPx7RVro5RUpF09VX7HATk0IOx2EZttJC3FFSjcoTUwxX0VIHGbSQs/sUKRg57UQdjoIzbaTFqJI6QaliSnmqwiJw0xaiCIFO22FsNNBaLadtBBFSjcoTUwxX0VIHGbSQo LlNOz1V0ssFMQwk4Hodl20kIUKd2gNDHFfBWpwyW7Qa5IGQ/2FiGIxQ4yEYJYhKBIOUJpYor5KlKHS3aDIBYUKewtZUAsdpCJEMQiBEXKEUoTU8xXERIXfqWFXtrh1h7sPBXCTgeh2XbSQtza0w1KE1PMVxESh5m00PsiVfEJ6zGWureTFsJOB6HZdtJCFCndoDQxxXwVIXGYSQs9tkORgp13QtjpIDTbTlqIIqUblCammK8iJA4zaSGKFOy0FcJOB6HZdtJCFCndoDQxxXwVqcMlu6FSkarjxLC3CEEsdpCJEMQiBEXKEUoTU8xXkTpcshvKxoIiBWwgFjvIRAhiEYIi5QiliSnmqwiJC7/SQu/tKhap o2lju2khbDTQWi2nbQQt/Z0g9LEFPNVhMRhJi30q0iV dv6jaWO7aSFsNNBaLadtBBFSjcoTUwxX0VIHGbSQl/sUKRg54UQdjoIzbaTFqJI6QaliSnmqwiJw0xaiCIFO22FsNNBaLadtBBFSjcoTUwxX0XqcMlukCtSxoO9RQhisYNMhCAWIShSjlCamGK itThkt3gXKTqMjfsLUIQix1kIgSxCEGRcoTSxBTzVYTEhV9poV92ZYpUvcdSl3bSQtjpIDTbTlqIW3u6QWliivkqQuIwkxaiSMFOWyHsdBCabSctRJHSDUoTU8xXERKHmbQQRQp22gphp4PQbDtpIYqUblCamGK ipA4zKSF6yq2hjd2Zd4mRS4W2NVQCDsdhGbbSQtRpHSD0sQU81WkHpbMNuNS4vgI4UUps6mHvUUCxGIHmQhBLEJQpByhNDHFfBUh8e8VaSErgwd2uCIFOzUh7HQQmm0nLcQVKd2gNDHFfBUhcZhJC0vKk/suhSIFO7 FsNNBaLadtBBFSjcoTUwxX0VIHGZyQmFtctml3BapzQ8jEQvsNBHCTgeh2XbSQhQp3aA0McV8FSFxmEkIKxQmN13KlR2KFOwUhLDTQWi2nbQQRUo3KE1MMV9FjFyyY1Vy8wA3Nva7e2Zj5N6iDmKxg0yEIBYhKFKOUJqYYr6KGLlklzfvKjwMRUqIkXuLOojFDjIRgliEoEg5QmliivkqQuLCb1XC4nok3aWqKFKb34DlckgZO EsNNBCDsdhGbbSQtxa083KE1MMV9FSBxm7oUlxchRVa5LuZ0TRaru7aSFsNNBaLadtBBFSjcoTUwxX0VIHGbuhdUWqWJJ8YNRpGDntxB2OgjNtpMWokjpBqWJKearCInDzKVQug/Zu1R1RapalWiAIIWw00EIOx2EZttJC1GkdIPSxBTzVcSkJduLlIQ2L6/iSVgdveXcpL3FQxCLHWQiBLEIQZFyhNLEFPNVxJglq7Sokmeo7nlQpOoexGIHmQhBLEJQpByhNDHFfBUhceHXjVBYgKq1UyxSGsYCO22FsNNBaLadtBC39nSD0sQU81WExGHmKCzXfiTsJItUtTcEbaZBCmGngxB2OgjNtpMWokjpBqWJKearCInDzFHoYZFaf7aqBChSdWsnLYSdDkKz7aSFKFK6QWliivkqQuIwqyyscA1JpUhVfVFKs1hgp7kQdjoIzbaTFqJI6QaliTXK1/po9NQX90RDjLFQ03P9lz yCj /O3a6p70xwhgLNT7Vffq9mcJfPJoZe727vSkvaO9 fWzmkRsfjZYsS9W9x/Vzun80px jGwzYW/wAsdhBJkIQixAUKUcoTVxFvku5ZJRVIprMLUkPsnh74HCcNSRSbwwNvZFKNLD4l7JTy5yvzueON7OGxLHTgxfPnzm2P8Z2J3N3Oed8/mKyORJLHD8zODR45ngiFmlOXpz3dsla4keL4nJFiniSbqC t/gEYrGDTIQgFiEoUo5QmliXIrXyfv/j0fjhc1MW55yvXuvfy7Z3DvyG88lsVyNrfW10weKc84V3elsj4c6BKb4ynT0SYU/0js5xzjmfG 19goVfGJhyvihF4sJvBWHlIqViV3WX0ikW2OkvhJ0OQrPtpIUB26FIOUJp4iryXb1z7e3cZt66cOZr 5sijDEWau38xsXJVckxVq707WLNRwen1rwmRv769W PTllLuWQ01JAaXi78xdxIajeLJnNLs7lkC2tIjaz9xfJIqoG1JHOzjl4kDrNyQse6E1yRUrYLUgg7HYSw00Fotp20EEVKNyhNLJ2v9fEv/ FbR/ZEQ4zF9xz 1j/cum/JT5G/vNT2pdQX2wrvkXo6df6Xi5zziUxHKJpI31h75NJ4uoOFnstMXM90xFkiPb7 HOPpBIt3ZG46mpE4zMoJUaRIbD6z7aSFsNNBaLadtBBFSjcoTSyTrzV34 /7Olu2MBaKtr10KverjxU6FOe8UI8YC7Uc6s2cf2voO9/s2h0KPZ4anubj6QSzFSnWkR6/lk5EbUWq JEbsPKUPMD eOmfqD9J5VHd MpN4qiqbUqe Pr0tOpPUoL0Rvd8e mz0aWfROeNruf2wkb372lRpByhNHGV S7cufLdP 54LMRYqOl3k2fe/XBJtUNxztfqUcOhgV8Xnu7hpdSO8Jajg3PaXJHSgZLD0qcnp5uPHyANIYjFDjIRgliEoEg5QmniKvJd/c2FE083hRhjLNTy/NcH3ix5w1Tu7Wt3JN8jZT0Y6tnKDpy8sbD2kxuFC07Lw6mGsOg9UnMjqd319h4pNy1H0a7aIqVDLLDDVqhDO2mh2XbSwoDtUKQcoTRxFfn6 ak963bmYLjoitT9C93b8v1J8Km9SFd2WvipvciR7PSKoxeJw0woDKxIuX8SHWKBHbZCHdpJC822kxaiSOkGpYk1KVLcmhh8cSeL7T925vxbQ3/z9c7WUOzZk1fnOV dH361NdSQSL0xlHvzbOpALP/eKc75/Nup1q2xROrs0MWhs6lEbGtr6m3/vkeq5i8HLisOihTstBXCTgeh2XbSQhQp3aA0sT75WjPvne5 qjHEGAtF93zx1OjaN5vzB7eyX81/mo9FP9uT/cXimmLx1rmetjhjjLF4W8 5W4uu3rBF4jCzC132G3U7FCnY SSEnQ5Cs 2khShSukFpYor5KkJ0yc79hil91XhJkSKakucgByGIxQ4yEYJYhKBIOUJpYor5KkJxyZXKDWPiP9VbOHvVH8hBCGKxg0yEIBYhKFKOUJqYYr6KkLjwWyIUNJty/Um2UTnYuVBVhdnX7c22kxbCTgeh2XbSQtza0w1KE1PMVxEShxkv12ycqpLLh7m1q2bIqjD7VdJsO2kh7HQQmm0nLUSR0g1KE1PMVxESh1mxcONem4ti5HzhysWc7u/u4VWyDu2khbDTQWi2nbQQRUo3KE1MMV9FSBxmxcLSFiVh5 ICVYmwbJESPpWbP27mdAGJzWe2nbQQdjoIzbaTFqJI6QaliSnmqwilJTO2fnXIsUK5f0JhxXEoUtL9yd31MG2htLcECGKxg0yEIBYhKFKOUJqYYr6KaLhk8eWfohbl/cxOLafs/USJSSg3Kg33Fh1ALHaQiRDEIgRFyhFKE1PMVxHdLvwye1sqKhzVtqiq5yx/9cjNLcXq7LxoVLptvjq0kxbCTgeh2XbSQtza0w1KE1PMVxGtDjNmo6Rk F6kipTiIuWHnUKd0mrz1aedtBB2OgjNtpMWokjpBqWJKeariD6HWcmFqJIuJbhSFcycmzucYxFUsqu Tumz erWTloIOx2EZttJC1GkdIPSxBTzVUSTw6y0pmwuT4IH1GJO34vU2v 471KabL56tpMWwk4Hodl20kIUKd2gNDHFfBXRYcnCFlWuSwU2Urk5g7GXuM0XADrsLRqCWOwgEyGIRQiKlCOUJqaYryI1X3LZFmV7gCZFKrjE9KtTNd9b9ASx2EEmQhCLEBQpRyhNTDFfRWp74VdQTUS9QbrBeH6BuvIY3l8Pd pSJK7bm20nLYSdDkKz7aSFuLWnG5QmppivIjU8zKqqR3VapNb ulydIvEqabadtBB2OgjNtpMWokjpBqWJKearSM2LlK OPhWpCn/rrV3xI4RdSpNY6tlOWgg7HYRm20kLUaR0g9LEFPNVpFaHWVWXo6Qd/Xg5qE2R4pu7VFGMftl5JzTbTloIOx2EZttJC1GkdIPSxBTzVaRWS5a7VRcYckUqCMrf5gvEXN9NVkMQix1kIgSxCEGRcoTSxBTzVaQmS672clTwOBap uxSOm yGoJY7CATIYhFCIqUI5QmppivIjW58CtRRLS6QF1u/uCuh6t1KbNvE DuSR3aSQvNtpMW4taeblCamGK igR/mMld0dHq5aD2RYordSmzX5RxrqpDO2mh2XbSQhQp3aA0McV8FalVkQrG0dciZX9M0K Ssl3K7BdlnKvq0E5aaLadtBBFSjcoTUwxX0UCXrJ0kQoYxwk1WkWA75fSZcmagVjsIBMhiEUIipQjlCammK8iKFJCKBUpHlyX0mjJOoFY7CATIYhFCIqUI5QmppivIkFe FVpUbpdoBaupZbX7avpUmbfJsDdkzq0kxaabSctxK093aA0McV8FUGRkhbqVaR4FV3K7BdlnKvq0E5aaLadtBBFSjcoTUwxX0UCO8wUb pp HKgXZHiRV2q4hOatBVqbicthJ0OQrPtpIUoUrpBaWKK SqCIiUttK9Ii1dJF13KpK1QcztpIex0EJptJy1EkdINShNTzFeRwJas0qKCx Womi7K9T2 6p9Yv8VqAGKxg0yEIBYhKFKOUJqYYr6KBLNkxctRwUNoVDH dCnysfgDYrGDTIQgFiEoUo5QmphivooEc F3vUWZfYFar v25buU2bHotRVgp7fQbDtpIW7t6QaliSnmqwiKFF07Z2GZLmV2LNptBdhpLDTbTlqIIqUblCammK8iARxmxff1zH450PFVUtSlzI5Fx60AO12FZttJC1GkdIPSxBTzVSSwIqViJy00286VkAk xGd2LDpuBdjpKjTbTlqIIqUblCammK8iASy5uEhRgdzAlRB1KdlnMigW70AsdpCJEMQiBEXKEUoTU8xXEb XXHxfjxDkBnYARcpPEIsdZCIEsQhBkXKE0sQU81XE7wu/JS3K7AvUWl 3L pSZsei9VaAnWZCs 2khbi1pxuUJqaYryIoUnTtqhaudSmzY9F9iNNu0gAAIABJREFUK8BOJ6HZdtJCFCndoDQxxXwV8fUws9/XM/vlgMCrpNo9PhKxENgKsNNGaLadtBBFSjcoTUwxX0UCKFLqdtJCs 0khQpdikQsNLYC7PQQmm0nLUSR0g1KE1PMVxFfl2wvUlQgOrYrmPyH EyORQHEYgeZCEEsQlCkHKE0McV8FfFvyfb7eoQgOrZbUKQ8BbHYQSZCEIsQFClHKE1MMV9F/LvwK2xRZl gpnTdXqpLkYiF0laAXa2FZttJC3FrTzcoTUwxX0VQpOjaSQsLquq7FIlYiG0F2NVUaLadtBBFSjcoTaxfvo/uvfW11lBLMjdb IF1d x0T3tjhDEWanyq /R7M1bhkTNjr3e3N4UYY6Gm9u7Xx2YeuTHw6TArd1/P7JcDeq SVXYpErHQ2wqwq53QbDtpIYqUblCaWLd8rQ//c8/OLYytF6nV dzxZtaQOHZ68OL5M8f2x9juZO4u55zPX0w2R2KJ42cGhwbPHE/EIs3Ji/MuLHxaMt13R UhPXwVBFKkjAex2EEmQhCLEBQpRyhNrFe q PZL zcGt0a2ihSk9muRtb62uiCxTnnC /0tkbCnQNTfGU6eyTCnugdneOccz432vsEC78wMOV8UQpFSgjp4aujmi5VR7FUA2Kxg0yEIBYhKFKOUJpYp3wf3Mz8fjzWefLfH42uF6mlXDIaakgNLxceMzeS2s2iydzSbC7ZwhpSI2t/sTySamBFNwTL48eF33L39aTtpIVm20kLS1WuuxSJWKhuBdjVQmi2nbQQt/Z0g9LE2uRrLV5PH4ztOJT5 ce55EaRmsh0hKKJ9I21hy2NpztY6LnMxPVMR5wl0uPrTzCeTrB4R amo5N/RcpDO2mhZ3aMOfzx1s5noUDlrkuReFEmvBVgZ/qciEUIipQjlCbWJd F908eaGr6wncnVvlScZEaTyeYrUixjvT4tXQiaitSxY8sC4qUUObBnyrnLKYqYZVrK6NCkTJ9TrPtpIVm20kLUaR0g9LEeuQ7 O RLjpK4MfLnO uUh5cUWKlafkAfbHu/yJ/WklnqSqUVUmcVmMyhlJPIObBZabttoHuP9JcZfy5GnVn6QE6Y3uyV7t ZPYp/Vwrw5mEp82up7bCxvdv6dFkXKE0sR65HsjnYgyO4n0 PJwqiEseo/U3Ehqd5DvkTIBp9Lj35OXKwu8TI1QMZL8U9atXveWiiAWO8hECGIRgiLlCKWJ9cj308krl3JrfL /cwtr7Owf/MGVyUXRp/YiXdlp4af2Ikey0yuOZnosOUDc9QbvY6nQn0RjODwy D8 xWIEiMUOMhGCWISgSDlCaWIN8910a4 vzg /2hpqSKTeGMq9eTZ1IBZ6PDU8zTnn82 nWrfGEqmzQxeHzqYSsa2tqbf9 x4p6aACFm6oqrnu4oGd6K/kWpFzo/J0TsVLVlXb SCkt3PCrnZCs 2khQHboUg5QmliDfPdXKQ45w9uZb/aFg0xxlj0sz3ZXywWfm4t3jrX0xZnjDEWb s5d2vRcvP8JA4zeaFsCfAwltIOVE4o1ah82XwlQSk3KrPPAdJC2OkgNNtOWogipRuUJqaYryIkDrOqhTW6iGJXuWw84r8tM7Z6nXJ fJnQCsIq4zX7HCAthJ0OQrPtpIUoUrpBaWKK SpC4jCrQqjWn6q2K6 qquVI28nVKdUiZX9YxcDNPgdIC2Gng9BsO2khipRuUJqYYr6KGLVkLyrU2jOpyuWuFSl6eWkqirHsMytfAiSNUQeRRyATIYhFCIqUI5QmppivIqYt2aPlqPyDLMgW5a 1rRJVcSmrnhqVaQeRFyATIYhFCIqUI5QmppivIiQu/EoLg7eT6zHezuk4QxV21RapEqFaoyKx0aWFsNNBaLadtBC39nSD0sQU81WExGEmLQzSTuVqkOdzVp4k0K2gUKf03 gqQtjpIDTbTlqIIqUblCammK8iJA4zaWEwduo31PwQVhipNluh jql80ZXF8JOB6HZdtJCFCndoDQxxXwVIXGYSQsDsGOb8duuKmG5qWq5Faq5QKXtRvdECDsdhGbbSQtRpHSD0sQU81WkDpfsBpexqFcov/F2PM WqXC/T0O03fo1BJkIQSxCUKQcoTQxxXwVqcMlu8FNLPq3qDweDun9So2oU5rvADUBmQhBLEJQpByhNDHFfBUhceFXWuifnbBFaRtLyajabYUydUq3je6tEHY6CM22kxbi1p5uUJqYYr6KkDjMpIU 2ZW7FqVzLMUDa7oVbPf7tNrongthp4PQbDtpIYqUblCamGK ipA4zKSFftiVa1E 2XkorDC5H3aSKuW3T2m FWCnldBsO2khipRuUJqYYr6K1OGS3VAuFvUuUltqUqTknFS6VMAQ3Rl8BZkIQSxCUKQcoTQxxXwVqcMlu0EYC/UWxZWXEPTCidQpuvuDfyATIYhFCIqUI5QmppivIiQu/EoL3dyhcyl0U0FIxKLSpWqzt1RZp0hsBdhpIjTbTlqIW3u6QWliivkqQuIwkxZW7kMlVBC6LB EYpHrUrXcW1zXKUJbAXY1F5ptJy1EkdINShNTzFcREoeZtHBdVa45Vfh5yfO4qR2EYpHrUrXfW1x0KUJbAXY1F5ptJy1EkdINShNTzFcREoeZtLBcT6rqke4LB6FYuNR1KS32FqdLU7S2AuxqKzTbTlqIIqUblCammK8ipi7ZZX9yI6xKTotqF6hRDq7v9AUyizaxaAMyEYJYhKBIOUJpYor5KmLekj0pQPXQovJUtUztotCjS2kXiwYgEyGIRQiKlCOUJqaYryIkLvy6F5bUApLXw0uutVR8Tk/mdN ldNxbbFlpu3PCTkOh2XbSwoDtUKQcoTQxxXwVIXGYuREK24Cmrz72qqTyx4s5CReptYeqX53SdG BnZ9Cs 2khShSukFpYor5KkLiMHMUlrumUrNXHw 7kQ81S7g6N11K973F637pqxB2OgjNtpMWokjpBqWJKearCInDrIKQbcZvuwoClX4jv Mp1ixb76zcpSrNqT6JJ2tx0SNlVueDEHY6CM22kxaiSOkGpYkp5qsI6SVXqFDqz z4iKqqUm2ovots5FmyipqXJK ali8x67G5dQKZCEEsQlCkHKE0McV8FaG7ZP9aFBfGQqI5VYubLlXrmqKylmBmpnsQ QcyEYJYhKBIOUJpYor5KkLiwm J0H2FUrKr/hxszHV7cZcisrdsUgXSq jFYpydtNBsO2khbu3pBqWJKearCInDrFhY1YUoGTuFs6xJr5LCkJkN/4aUFpaqKmxBj3oViYPIbDtpodl20kIUKd2gNDHFfBUhcZitC6s6f0vaKVyfMOxV0l6b3ODVkNJCscrNZpW9ZEXiIDLbTlpotp20EEVKNyhNTDFfRUgcZlz2HVFmv/pIC8vVnWp7kkq7Cnh1 b org 5LlUk9haz7aSFZttJC1GkdIPSxBTzVYTKktXPytXaBeBSc6otQI6x NqrPEDqzp1Yq/JUdUCdHEHVgliEoEg5QmliivkqQmLJwZ DScQijXS/kYhFx17lSQFCqaqI2UeQNIhFCIqUI5QmppivInJLlg5K8UwcgJ2KMGC7aoXqJcaTWNxXKx 3gqj6yB/ UqXK7J1T82OhTuykhQHboUg5QmliivkqovlhpnjdwuxXH5dC9f5UlV21KpelypchNzceb2JxXaq02grU7aSFgdvJuRkeC4qUI5QmppivIjofZurnfrNffSoLK5QSzWNRrFPV2XlepIRPLipVmm8FWnbSwqBeylxepvTGTl2IIqUblCammK8i2h5mJSdRbeesoZ1Q6KaFEIpFok7psBWED3JzmcozO49UVOykhf7ZebfBXdl5K0SR0g1KE1PMVxFtlyxxKcJb95r4quCqdqi9tNdwc1Rbp4Kk6pE8PMHqioabKRgq96e6jaUyKFKOUJqYYr6K6PnvFfspU885a2tXEAovQfn3J DVFf23yzpF6VqIVMIkdk5KW0HZzv2WrKtY3IMi5QiliSnmq4iGh5nwTKnhnL7buag1Mv2pxM7X1mW3U4vFTZ0q/aHfC6y4drerq0auxc6pmZ20UMVOYrPXQywSKhQpRyhNTDFfRXQ7zMqdIHWb01s7iZO0y8szNZ9TpXyUm1OmPpL4UyFh5c1H5VjQfE4X28dLu1oJUaR0g9LEFPNVRLfDzO1lBo/svBU6qxRaRbGLdIVyO6dXQj9rRxV1yqfVVRb6VrZ03 i1sJMWulQp9qdq7WouRJHSDUoTU8xXkTpcshs8iMWLzmSfSrFCKeK7afVx1TwT7lUsCtVKQwx4YfEjbwNi8QMUKUcoTUwxX0XqcMlukIxl8ytuBSTmqXld4BrvLbXNJyBHUgVL212lMn7HSTQWv0GRcoTSxBTzVYTEhV9pYZB2FYuTMy6fVn1OaZX dop1ikos8teuApyT1kuERFr1EEtgQhQpRyhNTDFfRUgcZtJC/ xU6pHbbuXi2XSLRRM7x03goZ200AO7Cid/76oViY0uIVSsmqbGUhM7FClHKE2sT77WzLunDu NMsYYCzU9/crAT2at/F/cHTvd094YYYyFGp/qPv3eTP7n/NHM2Ovd7U0hxlioqb379bGZR26MSBxm0kJv7eS6jks7uafVIRY97SS2C FYXNQBJlutar8674QKfVLGzitV8EIUKd2gNLEu a7eyDzbyGL7j505/9bQd77ZtTsUejw1PM356nzueDNrSBw7PXjx/Jlj 2NsdzJ3l3PO5y8mmyOxxPEzg0ODZ44nYpHm5MV5F1YkDjNpoVd2LsuNh6tz2QBIbL5g7BzLqOMWJB9LxYIgVnl01aqKIQMXVl4W Y3ujxBFSjcoTaxJvitX nax IH0z1fz///wUmpHeMvRwTk me1qZK2vjS5YnHO 8E5vayTcOTDFV6azRyLsid7ROc4553OjvU w8AsDU84XpTRZsm4w0VUNN83GbGq7fImqpEJVg/m3ahlUmpBH1armmXjXCb2dqtYTaAmKlCOUJtYk3 WRVAPbnRqZK/y/9bOT7VtDHZmJpVwyGmpIDS8X/mJuJLWbRZO5pdlcsoU1pEaWi5 hJZmbdfTSZMlaoXhaNZjAcvCj sg9pxsvR ua4UmPkKpWNclEz/JUjL67Sk1BkXKE0sRa5rv68Y//bXt46 P9769MZDpC0UT6xtpfLY2nO1jouczE9UxHnCXS4 ui8XSCxTsyNx2fXW7J0kEFLKxKJXFuVrGroVBDO4n6Imfnsg9VUalk95ngtoJauRDYuehVga1O4aqZjJ2iEC8RQlCkHKE0sXb5WnfHMn/YHgvH9v/Z5ZlHfDydYLYixTrS49fSiaitSBU/siwkDjNpoRuV4umwWjsdhDrYuakjgW1090KXw7vZqWqwFaS6hiu7ai5Wqdt5ZOXWzkMhXiKEoEg5QmlinfJ9NDOW6Wnfzli87cW/LHwEz4srUo6v8uX V Un6k9SeVQ3vsKfyD2tPil54uvT01b4XyH bfTK20s4rfpGd4N6sDLD2/5IT1Jutsq9qvKTlAxT9ACH8lRpyV4cGp48Scnq5CTST LJJH48LYqUI5Qm1ibfRzOX/2x/LBxrPzZw9Z61/uPl4VRDWPQeqbmR1O4g3yMlHVTAwnIqthm/7XQTBmPHnPBpTokhVexcCqVDkLNzpbKXET/snHpVBTvXIi/mDESIlwghKFKOUJpYk3ytqXOH45Gmw2dvLVqb/0bwqb1IV3Za Km9yJHs9IqjlyZLDgyXp7F6i8UlKo3B4EirXVo9hFN2RU6lqqryRA7zNrQnoEg5QmliPfLNt6JtieS/S29w q9HJlb56vzwq62hhkTqjaHcm2dTB2KF75fifP7tVOvWWCJ1duji0NlUIra1NfW2f98jRZGqzlv1E0tVVK6expeDcqj8893U3FytYq0imV2eijFj43oOipQjlCbWI99PrvTts7 2RpO5Jc45f3Ar 9W2aIgxxqKf7cn YrGgshZvnetpizPGGIu39ZyzXc0SI7dklTNHkEJmu2Hv8nnqIRZ1ocseQHR1EsJygTgG5TJJlTl12wqVypNUpTIjFk2EAduhSDlCaWKK SpC4jCTFro5LXlrJ6EKXqhoV9VZX90uGFUFYVXdyCfUFyin8tDO6Z6eTVjlRSqisegpDNgORcoRShNTzFcREoeZhLDCecgPOxWVJ0L3p2FpOzfPXHlICccgVZ4QvKPLAaqaTV3ImMMbnso9q8DO3VOozBmYMGA7aWHAdihSjlCamGK ipA4zKoSqpzbJOzUVS6FPp13...
Conica corta e cavalli
|
07-05-2014, 12:35
(Questo messaggio è stato modificato l'ultima volta il: 07-05-2014, 12:51 da Vitt.)
07-05-2014, 12:38
PS1 - mi spiegate come si posta il file excel?
PS2 - non riesco ad inviare il diagramma della Spinta alla ruota. Perche'? PS3 - quanto vale un cambio 6M usato? 600€ e' onesto?
07-05-2014, 13:01
spendere 600 euro è tanto!
può darsi sia accettabile per il mercato italiano dove l'offerta è molto minore della domanda vedo che in firma hai "UK" in inghilterra trovi cambi dai 150 pounds in su
It's only rock 'n roll but I like it, like it, yes I do!
07-05-2014, 14:35
pierpower Ha scritto:spendere 600 euro è tanto! ...ma questo e' un cambio su ebay in Inghilterra, a £500... Hai qualche posto in particolare dove cercare? Grazie
07-05-2014, 16:12
(Questo messaggio è stato modificato l'ultima volta il: 07-05-2014, 19:41 da Demios.)
Ho recentemente sviluppato un programmino semplice per la valutazione in prima approssimazione dei rapporto ottimali. Visto il particolare interesse e studio che ho affrontato su questo argomento ne approfitto per farlo girare con le caratteristiche di un paio di miata in modo da ottenere le cose più importanti di cui nessuno parla ma che sono fondamentali per la prima valutazione:
Tempi di accelerazione da Vminima a Vobiettivo senza considerare lo stacco frizione Grafico di accelerazione VS velocità Grafico velocità VS tempo Le approssimazioni sono: Curva di potenza "WOT" approssimata in forma polinomiale Efficienza della trasmissione costante (enorme aiuto alle marce corte) Calcolo numerico e non integrale degli intervalli di tempo Ipotesi di trazione in tutti i rapporti (ancora enorme aiuto ai rapporti corti) Nel caso delle MX5 non conosco le inerzie della trasmissione e del motore, quindi dovrò ipotizzarle ma la cosa che ci interessa sono le differenze, non i numeri assoluto quindi non sarà un problema Stasera gli dedico un minuto così otteniamo qualche numero e la smettiamo di parlare di aria fritta (senza offesa per nessuno, non ho letto attentamente tutte le pagine addietro) Inviato per mezzo di ioTelefono utilizzando parloTopa
Matteo
~ NC 2.0L: tremate davanti al lavandino da corsa! ~ http://www.mx5italia.com/showthread.php?...gatto)-2-0 https://www.facebook.com/DriveTherapy.net
07-05-2014, 22:20
Ok, ho dato in pasto tutti i dati e ho ottenuto risultati interessanti, che mi aspettavo, ma che adesso sono stati confermati.
Premessa: ho calcolato il tutto per NC 2.0l, scusate il campanilismo, ma ne ho approfittato per seguire i miei interessi. Ho usato i dati che ho trovato più altri che ho stimato, quindi i numeri assoluti non significano granchè, ma il confronto tra i due dati ottenuti per la conica da 3,727 e quella da 4,1 è comunque significativo visto che le valutazioni sono calcolate in base a costanti, ovviamente uguali per entrambi i calcoli. La valutazione è stata eseguita con i seguenti criteri e dati: Massa:1150 kg Cx: 0,34 Area frontale: 1,8 m^2 Potenza massima: 118kW @ 6700 RPM Gomme: 205/45R17 Redline: 7300 RPM Cambio: 6 marce, rapporti EU Inerzia di motore e trasmissione: stimate molto grossolanamente, al ribasso per non penalizzare troppo la conica da 4,1 Efficienza della trasmissione: un super-ottimistico 90% per la conica da 3,727. In corso d'opera ho pensato che mantenere la stessa anche per la 4,1 non avrebbe avuto significato, quindi l'ho abbassata ad un altrettanto ottimistico 89% per ridurre al minimo gli errori della mia stima ma conservare un minimo di consistenza con la realtà I tempi di accelerazione sono calcolati da 10 a 100km/h (posso anche fare dei calcoli per le riprese negli intervalli e nelle marce che più ritenete significativi, anche se, senza dubbio, porteranno ad un vantaggio della 4,1 se gli RPM di partenza sono bassi). Non ho considerato lo 0-100 perchè il lancio è un transitorio incasinato e meno significativo visto che la coppia può dipendere esclusivamente dalla frizione in caso di slittamento di questa, e la performance dipende maggiormente dalle caratteristiche delle gomme. All'interno dei tempi non sono considerati gli intervalli per il cambio marcia, sempre per non penalizzare la conica da 4,1 che ha bisogno della 3°, mentre la 3,727 la raggiunge in 2° (prima del punto ideale di cambiata, addirittura) a quanto dice MATLAB. L'accelerazione è considerata al saldo della resistenza all'avanzamento, sia aerodinamico che come resistenza al rotolamento. Quest'ultima è calcolata con valori "standard", chiaramente uguali per lungo tutti i calcoli. Il programma è molto semplice, pieno di approssimazioni e derivato da teorie alla base della progettazione di un veicolo. Tuttavia, nonostante questo, è un ottimo strumento per il confronto in quanto garantisce risultati consistenti tra diversi set-up e richiede una quantità di dati noti relativamente ridotta. Come diceva un mio professore: a complicare i modelli matematici si fa sempre a tempo, ma se richiedono il veicolo finito e una lunga serie di test per validarlo, che li facciamo a fare i conti? Partiamo con le cose serie: questo è il grafico di partenza (ottenuto per la conica 3.727) Sulle ordinate c'è l'accelerazione espressa in m/s^2 (come confronto, per chi non lo ricorda, l'attrazione gravitazione è di 9,81 m/s^2 quindi otteniamo un'accelerazione di circa 0,4-0,45 G). Le curve sono l'accelerazione in rapporto alla velocità nelle varie marce. Chiaramente la più "alta" si riferisce alla prima e le altre, via via a scendere, fino alla 6° marcia. Per ottimizzare un cambio queste curve DEVONO intersecarsi in un punto, possibilmente dopo il massimo di accelerazione, e non troppo vicino al limitatore della marcia più bassa (esempio intersezione per 94 km/h in seconda => punto ottimale di cambiata 94 km/h in seconda ovvero 94/(3.6*rapporto seconda*rapporto al ponte*raggio effettivo di rotolamento)*30/pi greco RPM (NB= i rapporti si indicano <1 se la marcia è demoltiplicativa (per la velocità), >1 se è moltiplicativa, quindi esattamente il contrario di come siete abituati a vederle, NB2 il raggio effettivo di rotolamento è solitamente il 98% del raggio totale della ruota). Se questi RPM obiettivo, così ottenuti, sono un po' prima del limitatore della seconda e un po' dopo il picco di accelerazione in terza siamo apposto). Qui c'è il confronto tra le curve: in blu c'è la conica 3.727 e in rosso la conica 4.1. Queste curve dipendono dalla marcia inserita soprattutto per la massa equivalente, ovvero il totale della massa in moto rettilineo e le masse (con l'opportuna correzione dipendente dal rapporto di velocità) rotanti. Infatti per accelerare l'auto non è sufficiente un'energia proporzionale alla sola massa in traslazione, ma bisognerà fornirne anche alle masse volaniche. Ad esempio in 1° la massa equivalente con la conica da 3.727 è di circa 1888 kg, mentre con la 4.1 sfiora i 2045 kg. Questo divario è giustificato dal fatto che, a parità di velocità, tutte le masse volaniche con la conica da 4.1 gireranno più velocemente aumentando l'energia cinetica complessiva. Per ottenere i tempi di accelerazione bisogna ottenere l'inversa di queste curve e calcolarne l'integrale (ovvero l'area sottesa dalle curve). Proprio l'area è il tempo necessario per passare da una velocità all'altra. Come dicevo prima, nel caso di intersezioni tra le curve, si minimizza quest'area e quindi si massimizza l'accelerazione. Ecco il risultato di confronto, ancora il blu identifica la 3.727 e il rosso la 4.1: Come si può vedere la 3.727 permette il raggiungimento dei 100 in seconda e, inoltre, per la maggior parte del grafico è al di sotto delle curve per la 4.1 risultando in tempi di accelerazione inferiori. Quest'ultimo grafico rappresenta la velocità raggiunta dopo un certo intervallo di tempo (velocità sulle y e tempo sulle x) Ancora una prova della migliore accelerazione con la conica da 3.727 Come ultima cosa ecco i tempi calcolati per operare il 10-100 km/h Conica 3.727: 7.7416 s Conica 4.1: 8.1637 s Il motivo di questo risultato, scioccante per molti di voi, è da ricercare nell'aumento della massa equivalente, in primis. La diminuzione dell'1% nell'efficienza della trasmissione è irrisorio (significa avere 1/90 di potenza in meno ovvero 1,78 CV in meno alla ruota) ma comunque contribuisce a dare un minimo di significato in più al calcolo. Ribadisco ancora che i tempi sono ottenuti considerando uguale a 0 il tempo per cambiare marcia, quindi non mi venite a dire che il risultato dipende solo dal fatto che una finisce in 3° e l'altra in 2°, non c'entra niente!
Matteo
~ NC 2.0L: tremate davanti al lavandino da corsa! ~ http://www.mx5italia.com/showthread.php?...gatto)-2-0 https://www.facebook.com/DriveTherapy.net
07-05-2014, 22:44
chiedo scusa ma non ho letto tutto, non ne ho voglia....
Demios scusa ma io ho sempre preferito le prove pratiche piuttosto che le teoriche, e faccio molta fatica a credere che i tuoi grafici siano corretti.... ok la teoria.... ma in pratica io ho sempre visto risultati opposti... con la mia Mx ad ogni modifica faccio una prova di accelerazione da 80 a 190 Km/h, non guardo i secondi ma i Mt percorsi.... e al montaggio della conica 4,78 (4,1 OEM) ho notato un netto miglioramento, se ricordo bene siamo attorno ai 3-400 Mt
07-05-2014, 23:01
(Questo messaggio è stato modificato l'ultima volta il: 07-05-2014, 23:14 da Demios.)
Non voglio sembrare scortese, non è il mio intento ma scrivo con estrema franchezza: il fatto che tu non creda a questi risultati è del tutto irrilevante. Questo è uno dei calcoli che si fa in fase di progettazione e deriva da formule che, di certo, non ho inventato io. Se sono accettate dal mondo ingegneristico non vedo come si possano contestare a pelle, senza un briciolo di argomentazione.
EDIT: per quanto riguarda lo spazio é l'integrale dell'ultimo grafico, quindi sempre l'area sottesa. Come si può vedere la curva per la conica da 3.727 è superiore, quindi a parità di tempo lo spazio percorso è maggiore. In ogni caso, se le marce sono meglio spaziate, è possibile ottenere tempi minori con la conica corta, ma il corretto spaziamento è insostituibile, conica o non conica si è comunque in una condizione sfavorevole, come nel caso della NC. Cambiando è più probabile fare danni. Di fatto il 6 marce US ha rapporti diversi da abbinare alla conica 4.1.
Matteo
~ NC 2.0L: tremate davanti al lavandino da corsa! ~ http://www.mx5italia.com/showthread.php?...gatto)-2-0 https://www.facebook.com/DriveTherapy.net
07-05-2014, 23:16
mi spiace averti contraddetto, ma e quello che penso...
se i preparatori da decenni riducono i rapporti per migliorare le prestazioni ci sarà un motivo... se si producono cambi ravvicinati, e nelle competizioni si usano, ci sarà un motivo... io sulla mia carriola ho avuto dei vantaggi, e le velocità le guardo con GPS... questo e per me un buon motivo, pratico e non teorico queste sono i principali motivi per cui certe volte non capisco le teorie
07-05-2014, 23:27
Non sono contraddetto, è solo che non capisco il fondamento della tua obiezione. C'è nero su bianco un risultato ottenuto con metodi rigorosi.
I preparatori possono fare quello che vogliono, non è detto che migliorino. I cambi ravvicinati sono un'altra cosa, quelli da gara si ottengono così: Si definisce una prima marcia ottimale, si sceglie l'ultima marcia per raggiungere una certa velocità massima (solitamente inferiore a quella massima teorica in questo campo) e dopo si ottengono tutte le altre marce analiticamente con un calcolino molto semplice. Accorciando l'ultima marcia (e quindi tutte quelle di mezzo ottenute con la formula) si fanno le famose marce corte che migliorano l'accelerazione. Lavorare sulla conica è come ridurre il consumo del clacson per ottenere una macchina più potente...è una roba risultato minimo e spesso discutibile... Inviato per mezzo di ioTelefono utilizzando parloTopa
Matteo
~ NC 2.0L: tremate davanti al lavandino da corsa! ~ http://www.mx5italia.com/showthread.php?...gatto)-2-0 https://www.facebook.com/DriveTherapy.net |
« Precedente | Successivo »
|
Discussioni simili | |||||
Discussione | Ultimo messaggio | ||||
[NC] Coppia conica 4.1 per |
30-04-2024, 07:26 Ultimo messaggio: Phreno |
||||
[NA/NB] coppia conica e differenziale guida |
10-09-2023, 21:44 Ultimo messaggio: alex zanardi |
||||
[NB FL] dove trovare coppia conica |
23-08-2021, 14:24 Ultimo messaggio: alex zanardi |
||||
[ND] Conica nd |
11-05-2021, 14:04 Ultimo messaggio: alc 63 |
||||
Coppia Conica: quale e come |
02-03-2021, 23:23 Ultimo messaggio: alex zanardi |
||||
[NB/NB FL] Conica corta NB 1.6 |
21-10-2020, 19:10 Ultimo messaggio: Number34 |
||||
[NB] Coppia conica 4.30 |
20-09-2019, 15:49 Ultimo messaggio: alex zanardi |
||||
[NA/NB] cambio coppia conica e revisione differenziale |
08-08-2019, 18:41 Ultimo messaggio: Krl90 |
||||
[NB/NB FL] Coppia Conica 4.1 |
16-05-2019, 11:19 Ultimo messaggio: Antonio |
||||
[NA] ancora su coppia conica 4.44 |
22-02-2019, 23:20 Ultimo messaggio: Krl90 |
Utenti che stanno guardando questa discussione: 2 Ospite(i)